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Abstract

In this paper, numerical solutions of singular integral equations are discussed in the analysis of axi-symmetric in-
terface cracks under torsion and tension. The problems of a ring-shaped interface crack are formulated in terms of a
system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body
force densities are approximated by the products of the fundamental density functions and power series, where the
fundamental densities are chosen to express a two-dimensional interface crack exactly. The accuracy of the present
analysis is verified by comparing the present results with the results obtained by other researchers for the limiting cases
of the geometries. The calculation shows that the present method gives rapidly converging numerical results for those
problems as well as for ordinary crack problems in homogeneous material. The stress intensity factors of a ring-shaped
interface crack are shown in tables and charts with varying the material combinations and also geometrical conditions.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years the use of composite materials has been increasing in a wide area and accurate evaluation
of interface strength in dissimilar materials has become very important. Considerable research has been
done to evaluate the stress intensity factors (Salganik, 1963; Erdogan, 1963; England, 1965; Rice and Sih,
1965; Willis, 1971; Comninou, 1977; Tucker, 1974; Erdogan and Gupta, 1975; Zhang, 1984; Delale, 1985;
Noda and Oda, 1997). However, most of these works are on two-dimensional cases except for some studies
(Mossakovski and Rybka, 1964; Erdogan, 1965; Kassir and Bregman, 1972; Willis, 1972; Lowengrub and
Sneddon, 1974; Keer et al., 1978; Sibuya et al., 1989; Yuuki and Cho, 1989). It should be noted that most
studies for three-dimensional interface cracks are limited to the calculation for specific dimensions under
special combination of the materials. In other words, closed form solutions are available only for a circular
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interface crack (Kassir and Bregman, 1972), and a deep circumferential interface crack (Takakuda et al.,
1978).

In the previous study (Chen et al., 1999), hypersingular intergro-differential equations for the planar
interface crack were indicated. However, the oscillation singularity as well as overlapping of crack surfaces
near the crack tip makes it much more difficult exactly to solve the equations compared with the cases of
ordinary cracks. In this paper, therefore, numerical solutions are considered for axi-symmetric interface
cracks on the basis of the equations. Then, it is shown that the proposed method gives stress intensity
factors accurately from the values of crack opening displacement obtained from numerical solutions.

2. Singular integral equations of a ring-shaped interface crack
2.1. Singular integral equations of three-dimensional interface crack

Singular integral equations for three-dimensional crack problem on bimaterial interface in Fig. 1 were
derived by Chen et al. (1999) as shown in Eq. (1).
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Fig. 1. Three-dimensional interface crack.



N.-A. Noda et al. | International Journal of Solids and Structures 40 (2003) 6577-6592 6579

Aui(x7y) :ui(xay’0+)_ui(xvy’0_) (l':x,y,z) (16)

In Eq. (1), unknown functions are crack opening displacements, in other words, displacement disconti-
nuities Au,, Au,, Au, defined in Eq. (le). Here, (x,y,z) is a point of question, and (¢, #,{) is a point where the
displacement discontinuities are applied. The notations p,, p,, p. are stresses 1., T.,, 0. at infinity, respec-
tively, and vy, v, are Poisson’s ratios. Here, the integration should be interpreted in the sense of a finite part
integral.

2.2. Singular integral equation for an axi-symmetric interface crack under torsion

In this paper, a ring-shaped interface crack as shown in Fig. 2 is considered. First, singular integral
equation of a ring-shaped interface crack subjected to uniform torsion will be derived. By substituting
Au, = —Auysin @, Au, = Augcos @, Au, =0, x =r, y=0, { = pcos @, n = psin ¢ into Egs. (1a), (1b), (1c)
and considering 0/00 = 0, p, = p. = 0, Eqgs. (1a), (1c) will vanish.

Then, Eq. (1b) becomes Eq. (2). Here, (7, 0,z) is a cylindrical coordinate in question, and (p, ¢,0) is a
cylindrical coordinate where the displacement discontinuities are applied.
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i 0
Eq. (2) is reduced to Eq. (3a). Here, K(k), E(k) are a complete elliptic integral of first and second.
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Fig. 2. Ring-shaped interface crack.
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By substituting » = r. + 1, p = r. + p’ into Eq. (3a) and putting . — oo, we obtain the following equation:
1, / " 1
- Auy————dp' = —p 4)
e o TR (r’ _ p’)2 y

This equation coincides with the equation of a two-dimensional interface crack subjected to anti-plane
shear (for example, Erdogan and Gupta, 1975).

2.3. Singular integral equations for an axi-symmetric interface crack under tension

Next, singular integral equation of a ring-shaped interface crack subjected to uniform tension in the
z-direction will be derived. By substituting Au, = Au, cos ¢, Au, = Au,sing, x=r, y=0, &= pcose,
n = psin ¢ into Eqgs. (1a), (1b), (1c) and considering p, = 0, Au, =0, /3y = 0, Eq. (1b) will vanish. Then,
we have

A 24 — /1 A;) o
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Egs. (5a), (5b) are reduced to Egs. (6a), (6b), respectively.
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Here, by substituting » =r. ++#, p =r. + p’ into Egs. (6a), (6b) and putting . — oo, we obtain the fol-
lowing equations:

oAu, C [™ 1
—pC—L+= | Au.———— dp' = —p. 7
pc—, +n/ri = (7a)
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0Au, C [ 1
e [ A dp = p,
pC o + pu /rl u = p’)2 dp D, (7b)

These equations coincide with the equations of a two-dimensional interface crack subjected to uniform
tension in z-direction (for example, Comninou, 1977).

3. Numerical solutions of singular integral equations
3.1. Torsion of a ring-shaped interface crack
Consider a ring-shaped interface crack under torsion at infinity as shown in Fig. 2. In the numerical

solution of Eq. (3a), the unknown crack opening displacement Auy is approximated by the product of the
fundamental density function wy(p) and the weight function Fy(p):

A=Y {Zito) b ®)

Here, the fundamental density function is chosen exactly to express the stress field due to a single interface
crack under anti-plane shear. The fundamental density function is given by (Rice and Sih, 1965)

2 2
1 1 1+x,
g —wy(p) = E 4 e —p? )

m=1 Hon m=1 Mo

In this numerical solution, the weight function Fj;;(p) is approximated by the following power series:

M
Fu(p) = a,p"" (10)
n=1

A set of collocation points is given by (Noda and Oda, 1997)
r=—ccos{nn/M+1)}+r. (n=1,....M) (11)

By using the numerical solution mentioned above, we finally obtain Eq. (12) by substituting Egs. (8)—(10)
into Eq. (3a):

1 M
D SR
n=1 ) , , (12)
A, = ’ 2 2 r +'0 1 n—1
n = c2—p > E — K p"dp
. (r+p)r—p)r  (rtp)r

It should be noted that Eq. (12) does not include elastic constants of the materials. It is known that stress
intensity factors of a two-dimensional interface crack under anti-plane shear are independent of elastic
constants (Willis, 1971; Tucker, 1974; Erdogan and Gupta, 1975; Zhang, 1984; Delale, 1985). In a similar
way, Eq. (12) shows that stress intensity factors of a ring-shaped interface crack under uniform torsion are
also independent of elastic constants.

Since Eq. (12) has singularities when r = p, the following expansion forms are applied to evaluate the
integrals. By substituting p = r + ¢ into Eq. (12) and neglecting the higher terms than &?, we have
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where

K(k) = In(8r/¢) — {In(8r/e) — 1}&*/16r* + - - -
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Using Egs. (13) with suitably chosen ¢, the integrals can be evaluated very accurately.

3.2. Tension of a ring-shaped interface crack

Consider a ring-shaped interface crack under tension at infinity. In the numerical solution of Egs. (6a),
(6b), the unknown crack opening displacements Au., Au, are approximated by the product of the funda-
mental density function w,(p), w,(p) and the weight functions Fi(p), Fy(p):

it = 3 () i) ) + i) (14)

m=1

Here, the fundamental density functions are expressed by

2 Ky — 1 o1 B 21 1+ K, —(c—pY
Z{um(1+'<n1)wz<p)+luW’(p)} _Zﬁ%osh(fw/i) cTr <c+p> 13

m=1 m m=1

Egs. (14) and (15) express the exact solution for the two-dimensional interface crack subjected to internal
pressure ¢, = p or 1., = ¢ (Rice and Sih, 1965; Nisitani et al., 1992, 1993). Here, y is defined by

= e 0 (s 4 ) (s + )] (16)

In this numerical solution, the weight functions Fi(p), F>(p) are approximated by the following power series:

M M
Fip)=> bip"", F(p) =) cip"” (17)
n=1 n=1

We obtain the fundamental equations of a ring-shaped interface crack by substituting Egs. (14)—(17) into
Egs. (6a), (6b):
M M

Z[ann + C,,C,,J = —Pp: Z [ann + CnEn] = —Px (183)

n=1 n=1
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It should be noted that the stress intensity factors depend on y only in a similar way of the ones of a penny-
shaped interface crack (Kassir and Bregman, 1972) and a deep circumferential interface crack (Takakuda
., 1978). A set of collocation points is given by Eq. (11). To evaluate the singular integrals in Eq. (18),
we apply the following expansion forms in a similar way of Eq. (13):
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Using Egs. (19) with suitably chosen ¢, the integrals can be evaluated very accurately.

4. Numerical results and discussion

4.1. Convergence of the results

&
7#)2{(1 — &) —dory) 4 -

(19¢)

First, a ring-shaped interface crack under uniform tension ¢, = o is analyzed with varying the number of
polynomials M in Eq. (17). Table 1 shows convergence of the results with increasing the collocation number
M when ¢/r. = 0.9, y/i = 0.07 and 0.15. Here, F] denotes F; value at the inner tip » = r; in Fig. 2, and F°
denotes F; value at the outer tip r =r,. In this analysis, generally, the convergence becomes slow as
¢/r. — 1 because of using two-dimensional solutions as the fundamental functions (see Eqgs. (8) and (15)).

However, Table 1 shows good convergence to the third digit at M = 13 even when ¢/r. = 0.9.

Table 1

Convergence of the present result of interface crack when c¢/r, =0.9. K| —iK} = (F| +iF})ov/me(l —2y), F} = F(r) (j=1,2),
K —iK =lim,_, \/2n(r; — r)(0. — it2)|,o{(ri — 7)/2¢}, K +iKS = (F + iF)ov/me(1 + 27), FP=F(r,) (j=12), K} +iK3 =

lim, _,, /2 — r,)(0 + )| _o{ (r = ro) /2¢Y

/i M H A R Fy

0.07 6 2.143 0.105 0.883 0.026
7 2.501 0.107 0.907 0.013
8 2.559 0.107 0.892 0.022
9 2.597 0.106 0.901 0.016
10 2.621 0.104 0.896 0.020
11 2.629 0.103 0.896 0.019
12 2.650 0.102 0.898 0.020
13 2.656 0.098 0.898 0.018

0.15 6 2.530 0.248 0.862 0.056
7 2.633 0.255 0.878 0.027
8 2.703 0.258 0.870 0.046
9 2.750 0.256 0.874 0.032
10 2.781 0.253 0.872 0.041
11 2.794 0.249 0.871 0.037
12 2.817 0.243 0.873 0.038
13 2.827 0.238 0.873 0.036
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Fig. 3. Kf/%a, /mr, and K;’/%a Tr, at the outer tip of ring-shaped interface crack (I' = M>/M,: shear modulus ratio).

In Fig. 3, present results are compared with the results of Nisitani et al. (1992) with varying ¢/r. and
I' = u,/u, systematically, where the closed form solution of a penny-shaped interface crack is also indicated
at ¢/r. — 1 (Kassir and Bregman, 1972). Regarding tension-type stress intensity factors at the outer tip
K?/(2/m)a\/mr,, both present results and Nisitani’s ones are in good agreement with the exact solution as
c/r. — 1. However, regarding shear-type stress intensity factors K5 /(2/m)o./7r, at the outer tip, the present
results seem more reliable because they are in better agreement with the exact solution as ¢/r. — 1.

4.2. Results of a ring-shaped interface crack under torsion

In Table 2 and Fig. 4, stress intensity factors of a ring-shaped interface crack under torsion are shown
with varying c¢/r.. Here, FfII denotes Fyy; value at the inner tip » = ; in Fig. 2, and Fjj, denotes Fy; value
at the outer tip » = r,. As shown in Fig. 4, the value of F{j, coincide with the results of a penny-shaped
interface crack as ¢/r. — 1 under torsion (Erdogan, 1965).

4.3. Results of a ring-shaped interface crack under tension

In Tables 3, 4 and Figs. 5, 6, stress intensity factors of a ring-shaped interface crack under uniform
tension are shown with varying y/i and ¢/r. systematically. In Table 3 the exact solution for a penny-shaped
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Table 2

Dimensionless stress intensity factors F,, F3 of interface crack. Fi, =K, /(ri/ro)tv/me, Ky =lim,_, \/21(ri — r)t|,_g»

Fiy = Kju/tv/me, Kiy = lim,_, /20(r = ro) ol By = Fin(n). Ky = Fin(ro)
c/re Fu iy
—0.0 1.000 1.000
0.1 1.018 0.970
0.2 1.027 0.935
0.3 1.027 0.899
0.4 1.019 0.864
0.5 1.002 0.831
0.6 0.973 0.801
0.7 0.928 0.773
0.8 0.857 0.748
0.9 0.724 0.726
— 1.0 0.707

1.1

09kt

0.8°L

o
F}H

7 (Erdogan,1965)

i
m >

: By =Ky (o] Joske
06" \/\A.M/ Mp';l K, =li"§1f2‘(ﬁ")fzeLzo
o.s; rt£><£>r u,,x, Fp=Kpftdre

S Ky = }Ln},lzn(r_ )t |Z_0

04l 0 .
0 0.2 0.4 0.6 0.8 1

efr,

Fig. 4. F; and FS; at the inner tip and outer tip of ring-shaped interface crack.

"

interface crack is indicated at ¢/r. — 1. The stress intensity factor is given in a closed form as shown in
Eq. (20) (Kassir and Bregman, 1972):

r2+y)
I(3+7)
In Tables 3 and 4, the results for y/i = 0-0.15 are shown, whose values are corresponding to most cases of
material combinations (Sih and Chen, 1981). As shown in Figs. 5 and 6, the present results coincide with the
results of two-dimensional interface crack as ¢/r. — 0. Next, in Fig. 7, normalized values of K¢/(2/m)o/7r,
and K5 /(2/m)a./mr, are shown to be compared with the exact solution for a penny-shaped interface crack.
As shown in Fig. 7, the present results at the outer tip coincide with the exact solution as ¢/r. — 1.

On the other hand, in Fig. 8, normalized results at the inner tip K} /(1/2)0ne/7r; and K3 /(1/2) e/
are shown. Here, g, is the nominal stress defined by Eq. (21) (Table 5):

1 i
Onet = =% 2nra,
‘m’i 0

2 o0
K? +1K7 — _ovme x F(y)(c/re — 1), F(y)=+vn , I'(z)= / e'Fde (20)
0

dr (21)

z=0




Table 3
Dimensionless stress intensity factors K /o\/rc, K5 /o\/mc of ring-shaped interface crack. K + iKY = lim,_,,

21'[(" - Vo)(o—: + iTrz)‘z:U{(r - ro)/zc})‘

c/re /i
000 00l 002 003 004 005 006 007 008 009 010 011 012 013 0.14 015
K = 0.0 1.000  1.000 1.000 1.000 1000 1000 1.000 1.000 1000 1000 1.000 1.000 1000 1.000 1.000 1.000
oyme 0.1 0.979 0979 0979 0979 0978 0978 0978 0977 0977 0976 0976 0975 0975 0974 0973  0.972
0.2 0.963 0962 0962 0962 0962 0961 0961 0960 0959 0958 0.957 0956 0955 0953 0.952  0.950
0.3 0.950 0949 0949 0949 0948 0948 0946 0946 0945 0943 0942 0940 0938 0936 0934  0.932
0.4 0.939 0939 0938 0938 0937 0936 0935 0934 0933 0931 0929 0927 0925 0922 0919 0916
0.5 0.930 0930 0929 0929 0928 0927 0926 0924 0922 0920 0918 0916 0913 0910 0906 0.903
0.6 0922 0922 0922 0921 0920 0919 0917 0916 0914 0911 0909 0906 0903 0.899 0.895  0.891
0.7 0916 0915 0915 0914 0913 0912 0910 0908 0906 0903 0900 0.897 0.894 0890 0885 0.881
0.8 0910 0910 0909 0908 0907 0906 0904 0902 0899 0896 0.893 0.889 0.885 0881 0876 0.871
0.9 0.903 0903 0903 0903 0902 0900 0.897 0895 0.892 0891 0.88 0882 0879 0871 0.866 0.862
—1.009 0900 0900 0900 0900 0.899 0.899 0.898 0.897 0.896 0.895 0.894 0.893 0.891 0.890 0.888  0.886
LS 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000 0.2200 0.2400 0.2600 0.2800 0.3000
wme 0.0000 0.0200 0.0401 0.0601 0.0801 0.1001 0.1202 0.1402 0.1601 0.1802 0.2002 0.2202 0.2401 0.2601 0.2800 0.3000
0.2 0.0000 0.0201 0.0402 0.0604 0.0805 0.1006 0.1207 0.1407 0.1608 0.1808 0.2009 0.2209 0.2409 0.2608 0.2807 0.3005
0.3 0.0000 0.0202 0.0404 0.0606 0.0808 0.1010 0.1210 0.1413 0.1614 0.1815 02015 02218 0.2415 02614 02813 0.3010
0.4 0.0000 0.0203 0.0406 0.0610 0.0812 0.1014 0.1218 0.1419 0.1623 0.1822 02023 02224 02422 02620 02819 0.3015
0.5 0.0000 0.0204 0.0408 0.0612 0.0816 0.1019 0.1221 0.1424 0.1627 0.1828 0.2029 0.2228 0.2427 02625 02821 0.3017
0.6 0.0000 0.0205 0.0410 0.0614 0.0819 0.1023 0.1226 0.1429 0.1631 0.1833 02034 0.2231 02430 02627 02821 0.3014
0.7 0.0000 0.0206 0.0411 0.0617 0.0822 0.1026 0.1230 0.1433 0.1635 0.1837 0.2036 0.2235 0.2435 02625 02817 0.3008
0.8 0.0000 0.0207 0.0413 0.0619 0.0824 0.1029 0.1234 0.1439 0.1641 0.1842 02042 02240 02436 02629 02822 0.3010
0.9 0.0000 0.0206 0.0417 0.0620 0.0827 0.1041 0.1249 0.1457 0.1664 0.185] 02052 0.2234 0.2436 02618 02803 0.2999
1009 0.0000 0.0215 0.0430 0.0645 0.0859 0.1074 0.1289 0.1504 0.1719 0.1934 02150 0.2365 0.2580 0.2795 03011 0.3226

26594459 (£007) O S24midNug pun spijos' fo [pmnoy [puopuiuf | v 12 ppoN -"N

L8S9



Table 4
Dimensionless stress intensity factors Ki /a+/nc, —Ki/a+/nic of ring-shaped interface crack. K} — iK} = lim,_,, \/2n(r; — r) (0. — it,.)|._o{(ri — r)/2¢}’
c/r. y/i
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
K? — 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
aymc 0.1 1.030 1.030 1.030 1.030 1.030 1.030 1.031 1.031 1.032 1.032 1.033 1.034 1.035 1.036 1.037 1.038
0.2 1.068 1.068 1.068 1.069 1.069 1.070 1.071 1.072 1.073 1.074 1.075 1.077 1.079 1.081 1.083 1.085
0.3 1.118 1.118 1.118 1.119 1.120 1.121 1.122 1.123 1.125 1.127 1.130 1.132 1.135 1.139 1.142 1.146
0.4 1.182 1.182 1.183 1.184 1.185 1.187 1.188 1.191 1.194 1.197 1.200 1.204 1.208 1.213 1.218 1.224
0.5 1.269 1.269 1.270 1.271 1.273 1.275 1.278 1.281 1.285 1.289 1.294 1.299 1.305 1.312 1.319 1.327
0.6 1.390 1.390 1.391 1.393 1.395 1.398 1.402 1.407 1.412 1.418 1.425 1.432 1.440 1.450 1.460 1.470
0.7 1.572 1.573 1.574 1.577 1.580 1.584 1.590 1.596 1.603 1.612 1.621 1.632 1.643 1.656 1.670 1.685
0.8 1.884 1.885 1.887 1.891 1.896 1.903 1.910 1.920 1.931 1.943 1.957 1.973 1.992  2.009 2.030 2.052
0.9 2.576 2577 2580  2.587 2595 2,606 2.620 2.636  2.655 2.677 2.698  2.728 2.757 27788  2.820  2.854
)
LS —0.0 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000 0.2200 0.2400 0.2600 0.2800 0.3000
ov/me 0.1 0.0000 0.0200 0.0400 0.0600 0.0801 0.1001 0.1201 0.1401 0.1601 0.1801 0.2002 0.2203 0.2403 0.2604 0.2806 0.3007
0.2 0.0000 0.0202 0.0404 0.0605 0.0807 0.1009 0.1211 0.1413 0.1615 0.1818 0.2020 0.2223 0.2426 0.2629 0.2832 0.3036
0.3 0.0000 0.0205 0.0409 0.0614 0.0818 0.1023 0.1228 0.1433 0.1639 0.1844 0.2050 0.2256 0.2463 0.2669 0.2877 0.3084
0.4 0.0000 0.0209 0.0418 0.0628 0.0837 0.1047 0.1256 0.1466 0.1677 0.1887 0.2099 0.2310 0.2522 0.2735 0.2948 0.3162
0.5 0.0000 0.0217 0.0433 0.0650 0.0867 0.1084 0.1302 0.1520 0.1738 0.1957 0.2177 0.2397 0.2618 0.2839 0.3062 0.3285
0.6 0.0000 0.0228 0.0457 0.0685 0.0915 0.1145 0.1375 0.1605 0.1836 0.2069 0.2302 0.2536 0.2771 0.3007 0.3244 0.3480
0.7 0.0000 0.0248 0.0497 0.0746 0.0996 0.1245 0.1496 0.1748 0.2001 0.2255 0.2511 0.2768 0.3028 0.3288 0.3550 0.3830
0.8 0.0000 0.0285 0.0571 0.0857 0.1144 0.1432 0.1722 0.2014 0.2305 0.2600 0.2895 0.3191 0.3499 0.3810 0.4111 0.4420
0.9 0.0000 0.0370 0.0742 0.1114 0.1488 0.1863 0.2242 0.2624 0.3003 0.3401 0.3798 0.4187 0.4590 0.5009 0.5420 0.5821
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Table 5 1

Onet/0 at the inside of ring-shaped interface crack. o, = =3 /0 2nre|,_,dr
c/r. y/i

0.00 0.05 0.10 0.15

— 0.0 1.000 1.000 1.000 1.000
0.1 1.209 1.207 1.197 1.176
0.2 1.456 1.453 1.437 1.411
0.3 1.763 1.758 1.742 1.714
0.4 2.163 2.159 2.141 2.116
0.5 2.716 2.712 2.694 2.660
0.6 3.537 3.534 3.517 3.485
0.7 4.898 4.893 4.876 4.842
0.8 7.606 7.594 7.570 7.534
0.9 15.65 15.58 15.50 15.44

The stress intensity factors for a deep circumferential interface crack are given by Eq. (22) as a closed form
(Takakuda et al., 1978):

|
K —iK, — zaneﬂ/nri x F(y)(c/re — 1)

1 i, 4 o T(1—) R
F —_  _(e™? _ myy_ AN 4/ F —
) Zﬁy(e <) @) /0 e

As shown in Fig. 8, the present results, K{ and K;, coincide with the exact solution as ¢/r. — 1.

5. Conclusions

In this paper, three-dimensional interface cracks were considered by using the singular integral equations
of the body force method. The stress intensity factors of a ring-shaped interface crack subjected to torsion
or tension at infinity were calculated systematically. The conclusion can be made as follows:

(1) In the numerical solution, the unknown functions were approximated by the fundamental density func-
tions and power series. It was found that the method gives rapidly converging numerical results (see
Table 1) under various geometrical conditions and material combinations (see Tables 3 and 4).

(2) For a ring-shaped interface crack under torsion, the results were independent of the elastic constants
similarly to the case of two-dimensional interface cracks subjected to anti-plane shear. The stress inten-
sity factors were shown in table and chart when the value of ¢/r. were changed systematically (see Table
2 and Fig. 4).

(3) For a ring-shaped interface crack under tension, the results depended on 7y only as shown in Eq. (18).
The stress intensity factors were shown in charts with varying y/i and ¢/r. systematically (see Figs. 5-8).

(4) The present results coincided with the solutions of a two-dimensional interface crack as ¢/r, — 0. On
the other hand, as ¢/r. — 1, the present results at the outer tip coincided with the exact solution for a
penny-shaped interface crack given by Kassir and Bregman (see Fig. 7(a), (b)). Also as ¢/r. — 1, the
present results at the inner tip coincided with the solution for a deep circumferential interface crack
given by Takakuda et al., 1978 (see Fig. 8(a), (b)).
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