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Abstract

In this paper, numerical solutions of singular integral equations are discussed in the analysis of axi-symmetric in-

terface cracks under torsion and tension. The problems of a ring-shaped interface crack are formulated in terms of a

system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body

force densities are approximated by the products of the fundamental density functions and power series, where the

fundamental densities are chosen to express a two-dimensional interface crack exactly. The accuracy of the present

analysis is verified by comparing the present results with the results obtained by other researchers for the limiting cases

of the geometries. The calculation shows that the present method gives rapidly converging numerical results for those

problems as well as for ordinary crack problems in homogeneous material. The stress intensity factors of a ring-shaped

interface crack are shown in tables and charts with varying the material combinations and also geometrical conditions.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years the use of composite materials has been increasing in a wide area and accurate evaluation
of interface strength in dissimilar materials has become very important. Considerable research has been

done to evaluate the stress intensity factors (Salganik, 1963; Erdogan, 1963; England, 1965; Rice and Sih,

1965; Willis, 1971; Comninou, 1977; Tucker, 1974; Erdogan and Gupta, 1975; Zhang, 1984; Delale, 1985;

Noda and Oda, 1997). However, most of these works are on two-dimensional cases except for some studies

(Mossakovski and Rybka, 1964; Erdogan, 1965; Kassir and Bregman, 1972; Willis, 1972; Lowengrub and

Sneddon, 1974; Keer et al., 1978; Sibuya et al., 1989; Yuuki and Cho, 1989). It should be noted that most

studies for three-dimensional interface cracks are limited to the calculation for specific dimensions under

special combination of the materials. In other words, closed form solutions are available only for a circular
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interface crack (Kassir and Bregman, 1972), and a deep circumferential interface crack (Takakuda et al.,

1978).

In the previous study (Chen et al., 1999), hypersingular intergro-differential equations for the planar

interface crack were indicated. However, the oscillation singularity as well as overlapping of crack surfaces
near the crack tip makes it much more difficult exactly to solve the equations compared with the cases of

ordinary cracks. In this paper, therefore, numerical solutions are considered for axi-symmetric interface

cracks on the basis of the equations. Then, it is shown that the proposed method gives stress intensity

factors accurately from the values of crack opening displacement obtained from numerical solutions.

2. Singular integral equations of a ring-shaped interface crack

2.1. Singular integral equations of three-dimensional interface crack

Singular integral equations for three-dimensional crack problem on bimaterial interface in Fig. 1 were

derived by Chen et al. (1999) as shown in Eq. (1).
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Fig. 1. Three-dimensional interface crack.



N.-A. Noda et al. / International Journal of Solids and Structures 40 (2003) 6577–6592 6579
Duiðx; yÞ ¼ uiðx; y; 0þÞ � uiðx; y; 0�Þ ði ¼ x; y; zÞ ð1eÞ

In Eq. (1), unknown functions are crack opening displacements, in other words, displacement disconti-
nuities Dux, Duy , Duz defined in Eq. (1e). Here, ðx; y; zÞ is a point of question, and ðn; g; fÞ is a point where the
displacement discontinuities are applied. The notations px, py , pz are stresses syz, szx, rz at infinity, respec-

tively, and m1, m2 are Poisson�s ratios. Here, the integration should be interpreted in the sense of a finite part

integral.
2.2. Singular integral equation for an axi-symmetric interface crack under torsion

In this paper, a ring-shaped interface crack as shown in Fig. 2 is considered. First, singular integral
equation of a ring-shaped interface crack subjected to uniform torsion will be derived. By substituting

Dux ¼ �Duh sinu, Duy ¼ Duh cosu, Duz ¼ 0, x ¼ r, y ¼ 0, n ¼ q cosu, g ¼ q sinu into Eqs. (1a), (1b), (1c)

and considering o=oh ¼ 0, px ¼ pz ¼ 0, Eqs. (1a), (1c) will vanish.

Then, Eq. (1b) becomes Eq. (2). Here, ðr; h; zÞ is a cylindrical coordinate in question, and ðq;u; 0Þ is a
cylindrical coordinate where the displacement discontinuities are applied.
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Eq. (2) is reduced to Eq. (3a). Here, KðkÞ, EðkÞ are a complete elliptic integral of first and second.
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Fig. 2. Ring-shaped interface crack.
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By substituting r ¼ rc þ r0, q ¼ rc þ q0 into Eq. (3a) and putting rc ! 1, we obtain the following equation:
1

p
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dq0 ¼ �py ð4Þ
This equation coincides with the equation of a two-dimensional interface crack subjected to anti-plane

shear (for example, Erdogan and Gupta, 1975).
2.3. Singular integral equations for an axi-symmetric interface crack under tension

Next, singular integral equation of a ring-shaped interface crack subjected to uniform tension in the

z-direction will be derived. By substituting Dux ¼ Dur cosu, Duy ¼ Dur sinu, x ¼ r, y ¼ 0, n ¼ q cosu,
g ¼ q sinu into Eqs. (1a), (1b), (1c) and considering py ¼ 0, Duy ¼ 0, o=oy ¼ 0, Eq. (1b) will vanish. Then,

we have
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Eqs. (5a), (5b) are reduced to Eqs. (6a), (6b), respectively.
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Here, by substituting r ¼ rc þ r0, q ¼ rc þ q0 into Eqs. (6a), (6b) and putting rc ! 1, we obtain the fol-

lowing equations:
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These equations coincide with the equations of a two-dimensional interface crack subjected to uniform

tension in z-direction (for example, Comninou, 1977).
3. Numerical solutions of singular integral equations

3.1. Torsion of a ring-shaped interface crack

Consider a ring-shaped interface crack under torsion at infinity as shown in Fig. 2. In the numerical

solution of Eq. (3a), the unknown crack opening displacement Duh is approximated by the product of the
fundamental density function whðqÞ and the weight function FIIIðqÞ:
Duh ¼
X2

m¼1

1

lm
whðqÞ

� �
FIIIðqÞ ð8Þ
Here, the fundamental density function is chosen exactly to express the stress field due to a single interface

crack under anti-plane shear. The fundamental density function is given by (Rice and Sih, 1965)
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In this numerical solution, the weight function FIIIðqÞ is approximated by the following power series:
FIIIðqÞ ¼
XM
n¼1

anqn�1 ð10Þ
A set of collocation points is given by (Noda and Oda, 1997)
r ¼ �c cos np=ðMf þ 1Þg þ rc ðn ¼ 1; . . . ;MÞ ð11Þ
By using the numerical solution mentioned above, we finally obtain Eq. (12) by substituting Eqs. (8)–(10)

into Eq. (3a):
1

p

XM
n¼1

anAn ¼ �py

An ¼
Z ro

ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � q2

p r2 þ q2

ðr þ qÞðr � qÞ2r
E � 1

ðr þ qÞr K
( )

qn�1 dq

9>>>>=
>>>>;

ð12Þ
It should be noted that Eq. (12) does not include elastic constants of the materials. It is known that stress

intensity factors of a two-dimensional interface crack under anti-plane shear are independent of elastic

constants (Willis, 1971; Tucker, 1974; Erdogan and Gupta, 1975; Zhang, 1984; Delale, 1985). In a similar

way, Eq. (12) shows that stress intensity factors of a ring-shaped interface crack under uniform torsion are

also independent of elastic constants.
Since Eq. (12) has singularities when r ¼ q, the following expansion forms are applied to evaluate the

integrals. By substituting q ¼ r þ e into Eq. (12) and neglecting the higher terms than e2, we have
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Using Eqs. (13) with suitably chosen e0, the integrals can be evaluated very accurately.
3.2. Tension of a ring-shaped interface crack

Consider a ring-shaped interface crack under tension at infinity. In the numerical solution of Eqs. (6a),

(6b), the unknown crack opening displacements Duz, Dur are approximated by the product of the funda-

mental density function wzðqÞ, wrðqÞ and the weight functions F1ðqÞ, F2ðqÞ:
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Here, the fundamental density functions are expressed by
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Eqs. (14) and (15) express the exact solution for the two-dimensional interface crack subjected to internal

pressure rz ¼ p or srz ¼ q (Rice and Sih, 1965; Nisitani et al., 1992, 1993). Here, c is defined by
c ¼ 1

2pi
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In this numerical solution, the weight functions F1ðqÞ, F2ðqÞ are approximated by the following power series:
F1ðqÞ ¼
XM
n¼1

bnqn�1; F2ðqÞ ¼
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We obtain the fundamental equations of a ring-shaped interface crack by substituting Eqs. (14)–(17) into
Eqs. (6a), (6b):
XM
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½bnBn þ cnCn� ¼ �pz;
XM
n¼1

bnDn½ þ cnEn� ¼ �px ð18aÞ
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It should be noted that the stress intensity factors depend on c only in a similar way of the ones of a penny-

shaped interface crack (Kassir and Bregman, 1972) and a deep circumferential interface crack (Takakuda

et al., 1978). A set of collocation points is given by Eq. (11). To evaluate the singular integrals in Eq. (18),

we apply the following expansion forms in a similar way of Eq. (13):
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Using Eqs. (19) with suitably chosen e0, the integrals can be evaluated very accurately.
4. Numerical results and discussion

4.1. Convergence of the results

First, a ring-shaped interface crack under uniform tension rz ¼ r is analyzed with varying the number of

polynomialsM in Eq. (17). Table 1 shows convergence of the results with increasing the collocation number
M when c=rc ¼ 0:9, c=i ¼ 0:07 and 0.15. Here, F i

1 denotes F1 value at the inner tip r ¼ ri in Fig. 2, and F o
1

denotes F1 value at the outer tip r ¼ ro. In this analysis, generally, the convergence becomes slow as

c=rc ! 1 because of using two-dimensional solutions as the fundamental functions (see Eqs. (8) and (15)).

However, Table 1 shows good convergence to the third digit at M ¼ 13 even when c=rc ¼ 0:9.
1
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p
ðrz þ isrzÞjz¼0 ðr � roÞ=2cf gc

M F i
1 F i

2 F o
1 F o

2

6 2.143 0.105 0.883 0.026

7 2.501 0.107 0.907 0.013

8 2.559 0.107 0.892 0.022

9 2.597 0.106 0.901 0.016

10 2.621 0.104 0.896 0.020

11 2.629 0.103 0.896 0.019

12 2.650 0.102 0.898 0.020

13 2.656 0.098 0.898 0.018

6 2.530 0.248 0.862 0.056

7 2.633 0.255 0.878 0.027

8 2.703 0.258 0.870 0.046

9 2.750 0.256 0.874 0.032

10 2.781 0.253 0.872 0.041

11 2.794 0.249 0.871 0.037

12 2.817 0.243 0.873 0.038

13 2.827 0.238 0.873 0.036



Fig. 3. Ko
1 =

2
p r

ffiffiffiffiffiffiffi
pro

p
and Ko

2 =
2
p r

ffiffiffiffiffiffiffi
pro

p
at the outer tip of ring-shaped interface crack (C ¼ M2=M1: shear modulus ratio).
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In Fig. 3, present results are compared with the results of Nisitani et al. (1992) with varying c=rc and
C ¼ l2=l1 systematically, where the closed form solution of a penny-shaped interface crack is also indicated

at c=rc ! 1 (Kassir and Bregman, 1972). Regarding tension-type stress intensity factors at the outer tip

Ko
1 =ð2=pÞr

ffiffiffiffiffiffiffi
pro

p
, both present results and Nisitani�s ones are in good agreement with the exact solution as

c=rc ! 1. However, regarding shear-type stress intensity factors Ko
2 =ð2=pÞr

ffiffiffiffiffiffiffi
pro

p
at the outer tip, the present

results seem more reliable because they are in better agreement with the exact solution as c=rc ! 1.
4.2. Results of a ring-shaped interface crack under torsion

In Table 2 and Fig. 4, stress intensity factors of a ring-shaped interface crack under torsion are shown

with varying c=rc. Here, F i
III denotes FIII value at the inner tip r ¼ ri in Fig. 2, and F o

III denotes FIII value
at the outer tip r ¼ ro. As shown in Fig. 4, the value of F o

III coincide with the results of a penny-shaped
interface crack as c=rc ! 1 under torsion (Erdogan, 1965).
4.3. Results of a ring-shaped interface crack under tension

In Tables 3, 4 and Figs. 5, 6, stress intensity factors of a ring-shaped interface crack under uniform
tension are shown with varying c=i and c=rc systematically. In Table 3 the exact solution for a penny-shaped



Table 2

Dimensionless stress intensity factors F i
III, F o

III of interface crack. F i
III ¼ K i

III=ðri=roÞs
ffiffiffiffiffi
pc

p
, K i

III ¼ limr!ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðri � rÞ

p
szhjz¼0,

F o
III ¼ Ko

III=s
ffiffiffiffiffi
pc

p
, Ko

III ¼ limr!ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � roÞ

p
szhjz¼0, F

i
III ¼ FIIIðriÞ, F o

III ¼ FIIIðroÞ
c=rc F i

III F o
III

! 0.0 1.000 1.000

0.1 1.018 0.970

0.2 1.027 0.935

0.3 1.027 0.899

0.4 1.019 0.864

0.5 1.002 0.831

0.6 0.973 0.801

0.7 0.928 0.773

0.8 0.857 0.748

0.9 0.724 0.726

! 1.0 0.707

Fig. 4. F i
III and F o

III at the inner tip and outer tip of ring-shaped interface crack.
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interface crack is indicated at c=rc ! 1. The stress intensity factor is given in a closed form as shown in
Eq. (20) (Kassir and Bregman, 1972):
Ko
1 þ iKo

2 ! 2

p
r

ffiffiffiffiffi
pc

p
� F ðcÞðc=rc ! 1Þ; F ðcÞ ¼

ffiffiffi
p

p Cð2þ cÞ
C 1

2
þ c

� � ; CðzÞ ¼
Z 1

0

e�ttz�1 dt ð20Þ
In Tables 3 and 4, the results for c=i ¼ 0–0:15 are shown, whose values are corresponding to most cases of

material combinations (Sih and Chen, 1981). As shown in Figs. 5 and 6, the present results coincide with the
results of two-dimensional interface crack as c=rc ! 0. Next, in Fig. 7, normalized values of Ko

1 =ð2=pÞr
ffiffiffiffiffiffiffi
pro

p

and Ko
2 =ð2=pÞr

ffiffiffiffiffiffiffi
pro

p
are shown to be compared with the exact solution for a penny-shaped interface crack.

As shown in Fig. 7, the present results at the outer tip coincide with the exact solution as c=rc ! 1.

On the other hand, in Fig. 8, normalized results at the inner tip K i
1=ð1=2Þrnet

ffiffiffiffiffiffi
pri

p
and K i

2=ð1=2Þrnet

ffiffiffiffiffiffi
pri

p

are shown. Here, rnet is the nominal stress defined by Eq. (21) (Table 5):
rnet ¼
1

pr2i

Z ri

0

2prrz

����
z¼0

dr ð21Þ



Table 3

Dimensionless stress intensity factors Ko
1 =r

ffiffiffiffiffi
pc

p
, Ko

2 =r
ffiffiffiffiffi
pc

p
of ring-shaped interface crack. Ko

1 þ iKo
2 ¼ limr!ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � roÞ

p
ðrz þ isrzÞjz¼0fðr � roÞ=2cgc

c=rc c=i

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Ko
1

r
ffiffiffiffiffi
pc

p ! 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.1 0.979 0.979 0.979 0.979 0.978 0.978 0.978 0.977 0.977 0.976 0.976 0.975 0.975 0.974 0.973 0.972

0.2 0.963 0.962 0.962 0.962 0.962 0.961 0.961 0.960 0.959 0.958 0.957 0.956 0.955 0.953 0.952 0.950

0.3 0.950 0.949 0.949 0.949 0.948 0.948 0.946 0.946 0.945 0.943 0.942 0.940 0.938 0.936 0.934 0.932

0.4 0.939 0.939 0.938 0.938 0.937 0.936 0.935 0.934 0.933 0.931 0.929 0.927 0.925 0.922 0.919 0.916

0.5 0.930 0.930 0.929 0.929 0.928 0.927 0.926 0.924 0.922 0.920 0.918 0.916 0.913 0.910 0.906 0.903

0.6 0.922 0.922 0.922 0.921 0.920 0.919 0.917 0.916 0.914 0.911 0.909 0.906 0.903 0.899 0.895 0.891

0.7 0.916 0.915 0.915 0.914 0.913 0.912 0.910 0.908 0.906 0.903 0.900 0.897 0.894 0.890 0.885 0.881

0.8 0.910 0.910 0.909 0.908 0.907 0.906 0.904 0.902 0.899 0.896 0.893 0.889 0.885 0.881 0.876 0.871

0.9 0.903 0.903 0.903 0.903 0.902 0.900 0.897 0.895 0.892 0.891 0.886 0.882 0.879 0.871 0.866 0.862

! 1.0ð15Þ 0.900 0.900 0.900 0.900 0.899 0.899 0.898 0.897 0.896 0.895 0.894 0.893 0.891 0.890 0.888 0.886

Ko
2

r
ffiffiffiffiffi
pc

p !0.0 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000 0.2200 0.2400 0.2600 0.2800 0.3000

0.1 0.0000 0.0200 0.0401 0.0601 0.0801 0.1001 0.1202 0.1402 0.1601 0.1802 0.2002 0.2202 0.2401 0.2601 0.2800 0.3000

0.2 0.0000 0.0201 0.0402 0.0604 0.0805 0.1006 0.1207 0.1407 0.1608 0.1808 0.2009 0.2209 0.2409 0.2608 0.2807 0.3005

0.3 0.0000 0.0202 0.0404 0.0606 0.0808 0.1010 0.1210 0.1413 0.1614 0.1815 0.2015 0.2218 0.2415 0.2614 0.2813 0.3010

0.4 0.0000 0.0203 0.0406 0.0610 0.0812 0.1014 0.1218 0.1419 0.1623 0.1822 0.2023 0.2224 0.2422 0.2620 0.2819 0.3015

0.5 0.0000 0.0204 0.0408 0.0612 0.0816 0.1019 0.1221 0.1424 0.1627 0.1828 0.2029 0.2228 0.2427 0.2625 0.2821 0.3017

0.6 0.0000 0.0205 0.0410 0.0614 0.0819 0.1023 0.1226 0.1429 0.1631 0.1833 0.2034 0.2231 0.2430 0.2627 0.2821 0.3014

0.7 0.0000 0.0206 0.0411 0.0617 0.0822 0.1026 0.1230 0.1433 0.1635 0.1837 0.2036 0.2235 0.2435 0.2625 0.2817 0.3008

0.8 0.0000 0.0207 0.0413 0.0619 0.0824 0.1029 0.1234 0.1439 0.1641 0.1842 0.2042 0.2240 0.2436 0.2629 0.2822 0.3010

0.9 0.0000 0.0206 0.0417 0.0620 0.0827 0.1041 0.1249 0.1457 0.1664 0.1851 0.2052 0.2234 0.2436 0.2618 0.2803 0.2999

! 1.0ð15Þ 0.0000 0.0215 0.0430 0.0645 0.0859 0.1074 0.1289 0.1504 0.1719 0.1934 0.2150 0.2365 0.2580 0.2795 0.3011 0.3226
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Table 4

Dimensionless stress intensity factors K i
1=r

ffiffiffiffiffi
pc

p
, �K i

2=r
ffiffiffiffiffi
pc

p
of ring-shaped interface crack. K i

1 � iK i
2 ¼ limr!ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðri � rÞ

p
ðrz � isrzÞjz¼0 ðri � rÞ=2cf gc

c=rc c=i

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Ko
1

r
ffiffiffiffiffi
pc

p ! 0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.1 1.030 1.030 1.030 1.030 1.030 1.030 1.031 1.031 1.032 1.032 1.033 1.034 1.035 1.036 1.037 1.038

0.2 1.068 1.068 1.068 1.069 1.069 1.070 1.071 1.072 1.073 1.074 1.075 1.077 1.079 1.081 1.083 1.085

0.3 1.118 1.118 1.118 1.119 1.120 1.121 1.122 1.123 1.125 1.127 1.130 1.132 1.135 1.139 1.142 1.146

0.4 1.182 1.182 1.183 1.184 1.185 1.187 1.188 1.191 1.194 1.197 1.200 1.204 1.208 1.213 1.218 1.224

0.5 1.269 1.269 1.270 1.271 1.273 1.275 1.278 1.281 1.285 1.289 1.294 1.299 1.305 1.312 1.319 1.327

0.6 1.390 1.390 1.391 1.393 1.395 1.398 1.402 1.407 1.412 1.418 1.425 1.432 1.440 1.450 1.460 1.470

0.7 1.572 1.573 1.574 1.577 1.580 1.584 1.590 1.596 1.603 1.612 1.621 1.632 1.643 1.656 1.670 1.685

0.8 1.884 1.885 1.887 1.891 1.896 1.903 1.910 1.920 1.931 1.943 1.957 1.973 1.992 2.009 2.030 2.052

0.9 2.576 2.577 2.580 2.587 2.595 2.606 2.620 2.636 2.655 2.677 2.698 2.728 2.757 2.788 2.820 2.854

K j
2

r
ffiffiffiffiffi
pc

p ! 0.0 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000 0.2200 0.2400 0.2600 0.2800 0.3000

0.1 0.0000 0.0200 0.0400 0.0600 0.0801 0.1001 0.1201 0.1401 0.1601 0.1801 0.2002 0.2203 0.2403 0.2604 0.2806 0.3007

0.2 0.0000 0.0202 0.0404 0.0605 0.0807 0.1009 0.1211 0.1413 0.1615 0.1818 0.2020 0.2223 0.2426 0.2629 0.2832 0.3036

0.3 0.0000 0.0205 0.0409 0.0614 0.0818 0.1023 0.1228 0.1433 0.1639 0.1844 0.2050 0.2256 0.2463 0.2669 0.2877 0.3084

0.4 0.0000 0.0209 0.0418 0.0628 0.0837 0.1047 0.1256 0.1466 0.1677 0.1887 0.2099 0.2310 0.2522 0.2735 0.2948 0.3162

0.5 0.0000 0.0217 0.0433 0.0650 0.0867 0.1084 0.1302 0.1520 0.1738 0.1957 0.2177 0.2397 0.2618 0.2839 0.3062 0.3285

0.6 0.0000 0.0228 0.0457 0.0685 0.0915 0.1145 0.1375 0.1605 0.1836 0.2069 0.2302 0.2536 0.2771 0.3007 0.3244 0.3480

0.7 0.0000 0.0248 0.0497 0.0746 0.0996 0.1245 0.1496 0.1748 0.2001 0.2255 0.2511 0.2768 0.3028 0.3288 0.3550 0.3830

0.8 0.0000 0.0285 0.0571 0.0857 0.1144 0.1432 0.1722 0.2014 0.2305 0.2600 0.2895 0.3191 0.3499 0.3810 0.4111 0.4420

0.9 0.0000 0.0370 0.0742 0.1114 0.1488 0.1863 0.2242 0.2624 0.3003 0.3401 0.3798 0.4187 0.4590 0.5009 0.5420 0.5821
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Fig. 5. Stress intensity factors at the outer tip of ring-shaped interface crack ðKo
1 þ iKo

2 ¼ limr!ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � roÞ

p
ðrz þ isrzÞjz¼0 ðr � roÞ=f

2cgcÞ: (a) Ko
1 =r

ffiffiffiffiffi
pc

p
, (b) Ko

2 =r
ffiffiffiffiffi
pc

p
.

Fig. 6. Stress intensity factors at the inner tip of ring-shaped interface crack ðK i
1 � iK i

2 ¼ limr!ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðri � rÞ

p
ðrz � isrzÞjz¼0 ðri � rÞ=f

2cgcÞ: (a) K i
1=r

ffiffiffiffiffi
pc

p
, (b) �K i

2=r
ffiffiffiffiffi
pc

p
.
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Fig. 7. Stress intensity factors at the outer tip of ring-shaped interface crack ðKo
1 þ iKo

2 ¼ limr!ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � roÞ

p
ðrz þ isrzÞjz¼0 ðr � roÞ=f

2cgcÞ: (a) Ko
1 =

2
p r

ffiffiffiffiffiffiffi
pro

p
, (b) Ko

2 =
2
p r

ffiffiffiffiffiffiffi
pro

p
.

Fig. 8. Stress intensity factors at the inner tip of ring-shaped interface crack ðK i
1 � iK i

2 ¼ limr!ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðri � rÞ

p
ðrz � isrzÞjz¼0 ðri � rÞ=f

2cgcÞ: (a) K i
1=ð12 rnet

ffiffiffiffiffiffi
pri

p Þ, (b) �K i
2=ð12 rnet

ffiffiffiffiffiffi
pri

p Þ.
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Table 5

rnet=r at the inside of ring-shaped interface crack. rnet ¼
1

pr2i

Z ri

0

2prrzjz¼0 dr

c=rc c=i

0.00 0.05 0.10 0.15

! 0.0 1.000 1.000 1.000 1.000

0.1 1.209 1.207 1.197 1.176

0.2 1.456 1.453 1.437 1.411

0.3 1.763 1.758 1.742 1.714

0.4 2.163 2.159 2.141 2.116

0.5 2.716 2.712 2.694 2.660

0.6 3.537 3.534 3.517 3.485

0.7 4.898 4.893 4.876 4.842

0.8 7.606 7.594 7.570 7.534

0.9 15.65 15.58 15.50 15.44
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The stress intensity factors for a deep circumferential interface crack are given by Eq. (22) as a closed form

(Takakuda et al., 1978):
K i
1 � iK i

2 !
1

2
rnet

ffiffiffiffiffiffi
pri

p � F ðcÞðc=rc ! 1Þ

F ðcÞ ¼ 1

2
ffiffiffi
p

p i

c
ðepic � e�picÞ Cð1� cÞ

C 1
2
� c

� � ; CðzÞ ¼
Z 1

0

e�ttz�1 dt
ð22Þ
As shown in Fig. 8, the present results, K i
1 and K i

2, coincide with the exact solution as c=rc ! 1.
5. Conclusions

In this paper, three-dimensional interface cracks were considered by using the singular integral equations

of the body force method. The stress intensity factors of a ring-shaped interface crack subjected to torsion

or tension at infinity were calculated systematically. The conclusion can be made as follows:

(1) In the numerical solution, the unknown functions were approximated by the fundamental density func-

tions and power series. It was found that the method gives rapidly converging numerical results (see

Table 1) under various geometrical conditions and material combinations (see Tables 3 and 4).

(2) For a ring-shaped interface crack under torsion, the results were independent of the elastic constants

similarly to the case of two-dimensional interface cracks subjected to anti-plane shear. The stress inten-

sity factors were shown in table and chart when the value of c=rc were changed systematically (see Table

2 and Fig. 4).
(3) For a ring-shaped interface crack under tension, the results depended on c only as shown in Eq. (18).

The stress intensity factors were shown in charts with varying c=i and c=rc systematically (see Figs. 5–8).

(4) The present results coincided with the solutions of a two-dimensional interface crack as c=rc ! 0. On

the other hand, as c=rc ! 1, the present results at the outer tip coincided with the exact solution for a

penny-shaped interface crack given by Kassir and Bregman (see Fig. 7(a), (b)). Also as c=rc ! 1, the

present results at the inner tip coincided with the solution for a deep circumferential interface crack

given by Takakuda et al., 1978 (see Fig. 8(a), (b)).
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